Abstract

Modified Chebyshev-Picard iteration methods are presented for solving boundary value problems. Chebyshev polynomials are used to approximate the state trajectory in Picard iterations, while the boundary conditions are maintained by constraining the coefficients of the Chebyshev polynomials. Using Picard iteration and Clenshaw-Curtis quadrature, the presented methods iteratively refine an orthogonal function approximation of the entire state trajectory, in contrast to step-wise, forward integration approaches, which render the methods well-suited for parallel computation because computation of force functions along each path iteration can be rigorously distributed over many parallel cores with negligible cross communication needed. The presented methods solve optimal control problems through Pontryagin’s principle without requiring shooting methods or gradient information. The methods are demonstrated to be computationally efficient and strikingly accurate when compared with Battin’s method for a classical Lambert’s problem and with a Chebyshev pseudospectral method for an optimal trajectory design problem. The reported simulation results obtained on a serial machine suggest a strong basis for optimism of using the presented methods for solving more challenging boundary value problems, especially when highly parallel architectures are fully exploited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.