Abstract

The purpose of this paper is to refine the BIOMATH calibration protocol for SBR systems, in particular to develop a pragmatic calibration protocol that takes advantage of SBR information-rich data, defines a simulation strategy to obtain proper initial conditions for model calibration and provides statistical evaluation of the calibration outcome. The updated calibration protocol is then evaluated on a case study to obtain a thoroughly validated model for testing the flexibility of an N-removing SBR to adapt the operating conditions to the changing influent wastewater load. The performance of reference operation using fixed phase length and dissolved oxygen set points and two real-time control strategies is compared to find optimal operation under dynamic conditions. The results show that a validated model of high quality is obtained using the updated protocol and that the optimization of the system's performance can be achieved in different manners by implementing the proposed control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.