Abstract

Based on the system-reservoir description we propose a simple solvable microscopic model for a nonequilibrium bath. This captures the essential features of a nonstationary quantum Markov process. We establish an appropriate generalization of the fluctuation-dissipation relation pertaining to this process and explore the essential modifications of the Bloch equations to reveal the nonexponential decay of the Bloch vector components and transient spectral broadening in resonance fluorescence. We discuss a simple experimental scheme to verify the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call