Abstract

In this paper a statistical approach is formulated for classical N-body systems formed by smooth hard spheres. Based on the emerging new axiomatic approach to Classical Statistical Mechanics recently developed, modified collision boundary conditions for the N-body probability density are introduced, which apply also to dense or locally dense hard-sphere systems. As a result, a modified form is determined for the BBGKY hierarchy, which is characterized by a new representation for the s-body collision operator. The same hierarchy, obtained here in differential form starting from the differential Liouville equation, is found to admit both stochastic and deterministic particular solutions. As an application, in the Boltzmann-Grad limit the hierarchy is shown to recover the ordinary Boltzmann equation holding in the case of rarefied gases. Comparison with literature and physical implications of the theory are pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.