Abstract
Abstract As a significant component of catalyst system, catalyst carrier can impact on coating amount of active component, and in turn catalytic activity. In this work, study of bamboo-based activated carbon as the catalyst carrier for gas phase synthesis of vinyl acetate from acetylene and acetic acid was carried out. Characterization and experimental results showed that bamboo-based activated carbon possessed the conditions and potential of being a catalyst carrier and characterized a greater advantage in structure and properties after modification. After ultrasonic treatment, it was found that the mesoporous distribution of activated carbon increased, which promoted the adsorption to zinc acetate and resulted in 23% increase in productivity of catalyst. Simultaneously, it had a different effect on surface area and pore-size distribution of activated carbon by thermal treatment at high temperatures in N2 and CO2 atmosphere. The productivity of catalyst with bamboo-based activated carbon as catalyst carrier after thermal treatment in N2 and CO2 can be increased by 14 and 20%, respectively. Furthermore, based on the influence of pore size on adsorption and reaction of active components, the necessity of expanding pores of carbon was explained in this paper, which pointed out the direction of activated carbon modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.