Abstract

Oxygen plasma and electron beam irradiation were used to graft hydrophobic substances and by this way, to reduce water vapor permeability (WVP) of arabinoxylan-based (AX-based) films. Stearyl acrylate (SA) and stearyl methacrylate (SM) were used as reactive monomers. The homogeneous AX-based films, which were pre-activated by oxygen plasma and impregnated with a solution of SA before being exposed to an electron beam (EB), had contact angles that increased from 71° (untreated films) to 122° (treated films). A decrease of about 24% in the WVP was obtained and new chemical groupings were observed on the FTIR spectra of these films. Acrylate monomers were also dispersed into the arabinoxylan network. The copolymerization started by direct EB exposure (B treatment) or pre-activation with electron beam, impregnation with additional monomer and second EB irradiation (C treatment). The barrier efficiency against water vapor transfer was about 50% for SA-emulsified film modified by C treatment. These results were explained by a denser film structure and a better grafting level generated by higher monomer concentration in the film. The SA monomer, which was a linear molecule and more reactive than the SM monomer, was grafted onto arabinoxylan polymeric chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.