Abstract

Anaerobic digestion (AD) is an established method for sustainable energy production. Anaerobic digestion model No.1 (ADM1) was used to simulate methane production (MP) and volatile fatty acid (VFA) concentrations at different ammonium concentrations. In accordance with the incomplete description of several biochemical reactions and the omission of several reaction processes, ADM1 was modified with the consideration of acetic acid inhibition and valeric acid existence. ADM1_ac (ADM1 added acetic acid inhibition) could obtain better simulation accuracy of MP (goodness-of-fit value=0.945), and VFA concentrations (goodness-of-fit values>0.39) were all higher than ADM1_original, but cannot explain the valeric acid production. ADM1_va (ADM1 added valeric acid existence) could achieve better simulation of valeric acid (achieving a breakthrough of zero), nevertheless the accuracy of propionic and butyric acids was poorer than ADM1_ac with differences between experimental and simulation values were 5%-10% lower. With both factors coordinated, MP and VFA concentrations could be simulated accurately by ADM1_ac_va (ADM1 added acetic acid inhibition and valeric acid existence), with the highest goodness-of-fit values (>0.85). The results of a verification experiment with ADM1_ac_va simulation further indicated that acetic acid inhibition and valeric acid as new component were both important in ADM1. PRACTITIONER POINTS: ADM1_ac could simulate MP and acetate, propionate and butyrate concentrations better. ADM1_va could explain the valerate production during AD of glucose. ADM1_ac_va could simulate AD process quite accurately, with the highest goodness-of-fit values (>0.85). Acetate inhibition and valerate existence were both important and should be considered in ADM1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call