Abstract
AbstractThe K-profile parameterization (KPP) is a common method to model turbulent fluxes in regional and global oceanic models. Many versions of KPP exist in the oceanic sciences community, and one of their main differences is how they take the effects of nonbreaking waves into account. Although there is qualitative consensus that nonbreaking waves enhance vertical mixing due to the ensuing Langmuir circulations, there is no consensus on the quantitative aspects and modeling approach. In this paper we use a recently developed method to estimate both components of KPP (the diffusive term, usually called local, and the nondiffusive component, usually called nonlocal) based on numerically simulated turbulent fluxes without any a priori assumptions about their scaling or their shape. Through this method we show that the cubic shape usually used in KPP is not optimal for wavy situations and propose new ones. Furthermore, we show that the formulation for the nondiffusive fluxes, which currently only depend on the presence of surface buoyancy fluxes, should also take wave effects into account. We also investigate how the application of these changes to KPP improves the representation of turbulent fluxes in a diagnostic approach when compared with previous models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.