Abstract

In the present study, some modifications were made to the zona-free nuclear transfer technique in the mouse in order to achieve greater efficiency. Firstly, a 1-h interval was allowed between cumulus removal and zona pellucida digestion. Secondly, acid Tyrode's was selected for zona pellucida removal, because contrary to pronase, it allows embryo survival during parthenogenic activation in the absence of calcium. Even when the exposure time to pronase was reduced to as little as 1 min or washed with fetal calf serum to inhibit the enzyme, the percentage of lysis during activation in the absence of calcium was still very high. Thirdly, electrofusion was performed at room temperature (21 degrees C), instead of 30 degrees C as in our previous experiments. Finally, embryos were cultured in groups of 12-15, instead of individually, using a "well of the wells" system during activation and culture. When compared, parthenogenic activated control embryos showed an increase in the development to blastocyst when cultured in pairs instead of individually. By the end of the experiments and using embryonic stem (ES) cells, there was a significant increase in fusion rate (1.5-fold increase) and in development to morula/blastocyst from cleaved reconstructed embryos (1.5-fold increase) when compared with the results before the modifications. A 2.4-fold increase in overall efficiency was achieved from the oocyte to morula/blastocyst stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.