Abstract

To improve the production of secondary metabolites by alternation of the carbon metabolic flux, two types of deletion mutants of the central metabolic pathway, the Embden-Meyerhof (EM) or pentose phosphate (PP) pathway, in the genetically engineered Streptomyces avermitilis were constructed. Double-deletion mutants of phosphofructokinase (ΔpfkA1ΔpfkA3) in the EM pathway carrying a gene cluster for chloramphenicol biosynthesis markedly increased chloramphenicol production synthesized through the shikimate pathway. Although the ΔpfkA1ΔpfkA3 double-deletion mutant grew more slowly, its specific productivity of chloramphenicol (per dry cell weight) was 2.0-fold higher than that of the engineered S.avermitilis strain. However, the productivity of chloramphenicol was lower by the double-deletion mutant of transaldolase in the PP pathway, which supplies the precursor of the shikimate pathway. A carbon-flux analysis of the EM and PP pathways using [1-13C] glucose revealed that carbon flux in the ΔpfkA1ΔpfkA3 double-deletion mutant increased through the PP pathway, which enhanced the production of chloramphenicol. These results suggest that a metabolic modification approach has the potential to increase the titers and yields of valuable secondary metabolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call