Abstract
Effects of combined extrusion pre-treatment and controlled enzymatic hydrolysis on the physico-chemical properties and emulsifying properties of soy protein isolates (SPI) have been investigated. Results showed that extrusion pre-treatment caused a marked improvement in the accessibility of SPI to enzymatic hydrolysis, resulting in changes in degree of hydrolysis (DH), protein solubility (PS), surface hydrophobicity (H0) and molecular weight distributions (MWD) for ESPIH (extrusion pre-treated SPI hydrolysates). It was observed that emulsion systems formed by control SPI or SPIH (SPI hydrolysates) (20%v/v oil, 1.6%w/v emulsifier, and pH 7.0) were unstable over a quiescent storage period of 21 days, due to bridging flocculation and creaming. However, ESPIH (9.1% DH) was capable of producing a very fine emulsion (d32=0.42μm, d43=2.01μm) which remained stable over a long term quiescent storage. Various surface properties of ESPIH products have also been studied in relation to DH and emulsifying functionalities. It was suggested that significantly increased protein solubility and decreased molecular weight could be the main reasons for the greatly improved emulsifying capability of ESPIH. This study demonstrated that modified soy protein could be an excellent emulsifying agent for food and other applications. It also demonstrated that combined extrusion pre-treatment and enzymatic hydrolysis could be a highly effective method for functionality modification of globular proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.