Abstract

The strategy of acceptor modification is a powerful technique for tuning the emission color of thermally activated delayed fluorescence (TADF) emitters. In this study, we have successfully designed and synthesized three TADF emitters with donor-acceptor (D-A) structures using a 4-(diphenylamino)-2,6-dimethylphenyl (TPAm) donor and various pyridine-3,5-dicarbonitrile (PC) acceptor units. As a result, three compounds named TPAmbPPC, TPAm2NPC, and TPAmCPPC exhibited greenish-yellow to orange-red emissions with high photoluminescent quantum yields (76-100%) in thin films. Remarkably, a greenish-yellow device based on TPAmbPPC and TPAm2NPC showed a high maximum external quantum efficiency (EQEmax) of 39.1 and 39.0%, respectively. Furthermore, benefiting from the suitable steric hindrance between the acceptor and donor, the nondoped organic light-emitting diodes (OLEDs) based on TPAmbPPC demonstrated an exceptional EQEmax of 21.6%, indicating its promising potential as an efficient emitter for the application of OLED applications. Furthermore, orange-red OLED devices based on TPAmCPPC exhibited a high EQEmax of 26.2%, a CE of 50.1 cd A-1, and a PE of 52.4 lm W-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.