Abstract
Guanine bases are sensitive to modification during automated DNA synthesis and processing reactions. Methods for the detection of two types of guanine modifications are described. The first method uses the higher reactivity of the modified G base to KMn04 oxidation than T bases, and thus allows detection by chemical DNA sequencing. The second method makes use of the Escherichia coli nucleotide excision repair enzyme UvrABC endonuclease which can detect "bulky" base modifications at each nucleotide in the synthetic DNA. Though the chemical structures of the two modifications are not known, they may be related. Both types of G modifications are often found in oligonucleotides synthesized by the methoxy-diisopropyl-phosphoramidite (MEDP) chemistry but non-detectable in the products of the beta-cyanoethyl-diisopropyl-phosphoramidite (CEDP) chemistry. The Rubin and Schmid pyrimidine-specific chemical DNA sequencing procedure (Rubin, C.M., and Schmid, C.W. (1980) Nucleic Acids Res. 8, 4613-4619) was found to be applicable to oligonucleotides synthesized by the CEDP chemistry, and to oligonucleotides synthesized by the MEDP chemistry if precautionary measures are taken to destroy the signals produced by the highly KMnO4 sensitive modified guanine bases. We also show how chemical DNA sequencing might be useful for diagnosing other chemical modifications in synthetic oligonucleotides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.