Abstract

Glucose turnover rate, 2-deoxy-D-[3H]glucose (2-DG) uptake, lipid synthesis in liver, white adipose tissue, and brown adipose tissue (BAT) were measured in lean FA/FA and genetically obese fa/fa rats either kept at 21 degrees C or acclimated to a cold environment (4 degrees C). After 10 days at 4 degrees C, lean rats increased their glucose turnover rate; 2-DG uptake as well as lipid synthesis in BAT were markedly stimulated. After cold acclimation, obese rats also increased glucose turnover; however, BAT glucose utilization was only slightly stimulated. Basal hyperinsulinemia and muscle insulin resistance of the obese group (as assessed by reduced 2-DG uptake in the soleus muscle) were present at room temperature and persisted at 4 degrees C. Total BAT lipid synthesis was increased to the same extent as in lean rats. Obese rat liver lipid synthesis, already much higher than normal at 21 degrees C, was further increased by cold exposure. We conclude that obese cold-acclimated fa/fa rats do not improve their muscle insulin resistance and barely improve BAT glucose utilization. We further suggest that an additional activation of hepatic lipid synthesis and oxidation thereof could participate in the heat production needed by the cold-acclimated obese rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call