Abstract
This work focuses on the impact of oxidizing (O2) and reducing plasma ashing chemistries (NH3, CH4) on the modifications of dielectric materials in a porous or an hybrid state (SiOCH matrix+porogen). The plasma ashing processes have been performed on blanket wafers using O2, NH3, and CH4 based plasmas. The modifications of the remaining film after plasma exposures have been investigated using different analysis techniques such as x-ray photoelectron spectroscopy, infrared spectroscopy, x-ray reflectometry, and porosimetric ellipsometry. For the porous material the authors have shown that NH3 and O2 plasmas induce carbon depletion and moisture uptake while the CH4 plasma only leads to important carbon depletion without moisture uptake and to the formation of a thin carbon layer on the surface. For the hybrid material, no significant material modification is evidenced with the O2 plasma while an important methyl depletion and porogen degradation are observed with reducing chemistries such as CH4 and NH3 plasmas. The impact of the porogen on the film modification and the value of the dielectric constant will be presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.