Abstract

An increasing number of mammalian cell adhesion molecules, including sialoadhesion, CD22 and the family of selectins, have been found to bind cell surface glycoconjugates containing sialic acids. Here we describe how the structural diversity of this sugar influences cell adhesion mediated by the related molecules sialoadhesin and CD22 in murine macrophages and B-cells respectively. We show that the 9-O-acetyl group of Neu5,9Ac2 and the N-glycoloyl residue of Neu5Gc interfere with sialoadhesin binding. In contrast, CD22 binds more strongly to Neu5Gc compared to Neu5Ac. Of two synthetic sialic acids tested, only CD22 bound the N-formyl derivative, whereas a N-trifluoroacetyl residue was accepted by sialoadhesin. The potential significance for the regulation of sialic acid dependent cell adhesion phenomena is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call