Abstract

This chapter considers different modifications of Bayes procedures and their applications in finite population sampling. Section 4.2 reviews Bayes least squares prediction or Linear Bayes prediction. Section 4.3 addresses restricted Bayes least squares prediction. The problem of Constrained Bayes prediction and Limited Translation Bayes prediction have been considered in the next section. Applications of these procedures in finite population sampling have been illustrated in various stages. Section 4.5 considers the robustness of a Bayesian predictor derived under a working model with respect to a class of alternative models as developed by Bolfarine et al (1987). Robust Bayes estimation of a finite population mean under a class of contaminated priors as advocated by Ghosh and Kim (1993, 1997) has been addressed in the last section.KeywordsPredictive DistributionFinite PopulationGood Linear Unbiased EstimatorPosterior VarianceGood Linear Unbiased EstimatorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.