Abstract

In the present paper, 80 MeV Si7+ ion beam-induced changes in selenium nanowire arrays, fabricated on copper substrates, have been examined. The nanowire arrays were electrodeposited into polymer membranes using template method. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy have been used to study the ion-induced effects in fabricated nanowire arrays. The XRD and FESEM results confirmed the formation of selenium nanowire arrays with trigonal structures. An intensity variation in the XRD peaks is observed for irradiated nanowires at different ion fluences. The band gap energy of the irradiated nanowire arrays was found to reduce compared with the pristine case. The irradiation of semiconducting selenium nanowires enhances the electrical conductivity. The current–voltage characterizations also confirm an enhancement in electrical conductivity of selenium nanowire arrays with an increase in ion fluence. This study is anticipated to greatly facilitate the design and development of nanodevices-based semiconductor nanowires which can be utilized even in the harsh environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.