Abstract
The effects of growth temperature (in the range 10–45 °C) and acidification up to pH 4.5 of the culture medium (Brain Heart Infusion, BHI) with different organic acids (acetic, citric and lactic) and hydrochloric acid on membrane fatty acid composition and heat resistance of Salmonella typhimurium CECT 443 were studied. The heat resistance was maximal in cells grown at 45 °C (cells grown in non-acidified BHI showed a D 58-value of 0.90 min) and decreased with decreasing growth temperature up to 10 °C ( D 58-value of 0.09 min). The growth of cells in acidified media caused an increase in their heat resistance. In general, acid adapted cells showed D-values of between 1.5 and 2 times higher than the corresponding for non-acid adapted control cells. This cross-protection response, which has important implications in food processing, was not dependent on the pH value and the acid used to acidify the growth medium. A membrane adaptation corresponding to an increase in the unsaturated to saturated fatty acids ratio (UFA/SFA) and membrane fluidity was observed at low growth temperature. Moreover, the acidification of the growth medium caused a decrease in UFA/SFA ratio and in the C18:1 relative concentration, and an increase in cyclopropane fatty acids (CFA) content mainly due to the increase in cyc19 relative concentration. Thus, acid adapted cells showed CFA levels 1.5 times higher than non-acid adapted control cells. A significant proportion of unsaturated fatty acids were converted to their cyclopropane derivatives during acid adaptation. These changes in membrane fatty acid composition result in cells with decreased membrane fluidity. A clear relation between membrane fatty acid composition and heat resistance was observed. In general, D-values were maximum for cells with low UFA/SFA ratio, and, consequently, with low membrane fluidity. Moreover, CFA formation played a major role in protecting acid adapted cells from heat inactivation. However, changes observed in membrane fatty acid composition are not enough to explain the great thermotolerance of cells grown at 45 °C. Thus, other mechanisms, such as the synthesis of Heat Shock Proteins, could be responsible for this increase in the bacterial heat resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.