Abstract

Oil–water two-phase flow widely exists and its measurement is of significance in oil well logging, oil transportations, etc. One of the techniques in common use in oil–water two-phase flow rate measurement is the differential pressure (DP) meters combining a theoretical model connecting the mass flow rate of the mixture with the differential pressures generated by the throttling element installed inside the pipeline. Though a number of publications focus on DP meters in measuring gas–water two-phase flows or wet gas, the existing models are still not very compatible in oil–water two-phase flow. In this work, a series of oil–water two-phase flow experiments were conducted in a horizontal pipe of 50 mm diameter and the flow rate was measured by a V-cone meter with a diameter ratio of 0.65. Available correlations of DP meters developed from gas–water flow are studied and compared with the measured data from the V-cone meter. A modified correlation is proposed based on the influence of viscosity of oil upon the differential pressure model and three-dimensional computerized fluid dynamic (CFD) simulations. The results have shown that the proposed method achieves better accuracy in oil–water two-phase flow rate measurement than other DP correlations, and it can be extended to other oil–water flow conditions by adjusting the tuning factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.