Abstract

Influences of one sewage sludge on degradation of hexazinone and formation of its major metabolites were investigated in four forest soils (A, B, C and D), collected in Zhejiang Province, China. In non-amended forest soils, the degradation half-life of hexazinone was 21.4, 30.4, 19.4 and 32.8 days in forest soil A, B, C and D, respectively. Degradation could start in soil A and C without lag period because the two soils had been contaminated by this herbicide for a long time, possibly leading to completion of acclimation period of hexazinone-degrading bacteria. In forest soils amended with sewage sludge, the degradation rate constant increased by 17.3% in soil A, 48.2% in soil B, 8.1% in soil C and 51.6% in soil D, respectively. The higher degradation rates (soil A and C) in non-amended soils accord with the lower rate increase in sewage sludge-amended soils. Under non-sterile conditions, biological mechanism accounted for 51.8–62.4% of hexazinone degradation in four soils. Under sterile conditions, the four soils had the similar chemical degradation capacity for hexazinone. In non-amended soil B, only one metabolite (B) was detected, while two metabolites (B and C) were found in sewage sludge-amended soil B. Similarly situated in agricultural soils, N-demethylation at 6-position of triazine ring, hydroxylation at the 4-positon of cyclohexyl group, and removal of the dimethylamino group with formation of a carbonyl group at 6-position of triazine ring appear to be the principal mechanism involved in hexazinone degradation in sewage sludge-amended forest soils. These data will improve understanding of the actual pollution risk as a result of forest soil fertilization with sewage sludge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call