Abstract

Manipulating the topological defects and electronic properties of graphene has been a subject of great interest. In this work, we have investigated the influence of Er predeposition on flower defects and electronic band structures of epitaxial graphene on SiC. It is shown that Er atoms grown on the SiC substrate actually work as an activator to induce flower defect formation with a density of 1.52 × 1012 cm-2 during the graphitization process when the Er coverage is 1.6 ML, about 5 times as much as that of pristine graphene. First-principles calculations demonstrate that Er greatly decreases the formation energy of the flower defect. We have discussed Er promoting effects on flower defect formation as well as its formation mechanism. Scanning tunneling microscopy (STM) and Raman and X-ray photoelectron spectroscopy (XPS) have been utilized to reveal the Er doping effect and its modification to electronic structures of graphene. N-doping enhancement and band gap opening can be observed by using angle-resolved photoemission spectroscopy (ARPES). With Er coverage increasing from 0 to 1.6 ML, the Dirac point energy decreases from -0.34 to -0.37 eV and the band gap gradually increases from 320 to 360 meV. The opening of the band gap is attributed to the synergistic effect of substitution doping of Er atoms and high-density flower defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.