Abstract

The transport properties of zigzag graphene nanoribbons (ZGNRs) with different patterns of vacancies are investigated by using the density functional theory and nonequilibrium Green's function (NEGF) formalism. It is found that the transport properties vary with lattice type vacancy. For two vacancies, A-B type vacancies have the most significant influence on the conductance of ZGNRs, while A-A type vacancies have the most slightly influence on the conductance. More importantly, the pattern of vacancies has enormous influence on electron transport around the Femi energy. As hexagon carbons are removed, the ZGNRs will be modified, changing from metallic to semiconducting. This lays the theoretical foundation for tuning the electron properties of ZGNRs by patterning vacancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.