Abstract

Transformation-induced plasticity (TRIP) assisted steels possess improved strain hardening behavior and resistance to necking that are favorable for automotive body applications. However, the TRIP effect causes complex springback behavior of these steels that can hardly be predicted by existing constitutive models for other steels. In this work, the functions in the original Yoshida-Uemori model describing isotropic and kinematic hardening were modified by adding new parameters that can represent the TRIP effect. Cyclic tension/compression experiments were performed on a selected TRIP-steel grade, and the results were used to calibrate the modified model. The modified model was coded via user subroutine into a commercial FE solver. The springback predictions were compared with actual try-out stamping experimental results for highlighting the improvement of predictions with the modified model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.