Abstract

Nanoscale zerovalent iron (NZVI) was layered onto ultrafiltration (UF) membrane surface and tested for antifouling properties using humic acid (HA). Scanning electron microscopy showed that a relatively homogeneous layer was formed across the membrane surface by NZVI particles. Strong adhesion was observed between NZVI and UF membrane used. HA was significantly removed and membrane flux was increased in the presence of NZVI layer. Increased loadings of NZVI onto the membrane surface increased resistance to fouling while slightly reducing the clean water permeability of the membrane. However, the pore size of the layer formed by pristine NZVI was large, resulting in more chances of HA molecules getting to the membrane surface even blocking the membrane pores at the beginning. Membrane loaded with NZVI layer performed much better under acidic conditions. During NZVI synthesis, specific surface area of NZVI particle increased with increasing the ratio of ethanol (Vethanol/Vsolution), which also gradually decreased the average pore size of NZVI layer. As a result, the corresponding membrane flux steadily increased. Additionally, the results for permeate samples under different conditions showed that large molecular weight (MW, >30 kDa) and medium MW HA molecules (3–30 kDa) were removed much faster than those of small MW HA molecules (<3 kDa).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.