Abstract

The elements added diamond-like carbon films (hydrogen, fluorine, and sulfur) fabricated from C 2H 2:H 2, C 2H 2:CF 4 and C 2H 2:SF 6 mixtures were used to compare and study the effects of element contents on the deposition and tribological properties of films prepared by plasma-based ion implantation (PBII). The structure of the films was analyzed by Raman spectroscopy. Hardness and elastic modulus of films were measured by nano-indentation hardness testing. Contact angle and surface energy of films were measured by contact angle measurement. Tribological characteristics of films were performed using a ball-on-disk friction tester. The results indicate that with the increasing element contents, the hardness and elastic modulus, and surface energy of all films decreases, while the surface angle tends to increase. Additionally, H-DLC films at C:H flow rate ratio of 1:4 shows a friction coefficient of 0.08 under ambient air, which are considerable improvement in the tribological properties. This is due to the formation of a transfer films on the interface and high hydrogen contents. For F-DLC films and S-DLC films, does not show a significant decrease in the friction coefficient with the fluorine and sulfur contents under ambient air. The decrease in the friction coefficient is greater under high vacuum than under ambient air.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.