Abstract

The work considered the properties of a biosensor based on a novel nanomaterial-modified thermally expanded graphite (TEGM). The main focus was on whether the procedure of additional graphite thermal expansion would affect the electrochemical properties of biosensors based on membrane fractions of acetic acid bacteria Gluconobacter oxydans. Raman spectroscopy, scanning electron microscopy and electrochemical analysis were used for the study. Raman spectra showed that the formation of TEGM led to its stratification into smaller particles and a better orderly layered structure with high "graphenization" degree. Modification of TEG led to the formation of additional cavities into which bacterial cells or bacterial membrane fractions could be immobilized and affect the electrical conductivity of the biosensors positively. Calculation of the heterogeneous charge transfer constants showed that processes occurring on the electrodes are quasi-reversible. The limiting stage of these processes is the transfer of an electron from a biological component on the electrode surface, not the diffusion of the analyte from the solution to the active centers of the enzyme. We showed the possibility of developing third-generation mediator-free biosensors for glucose detection based on TEGM, as well as of second-generation mediator biosensors for glucose, ethanol and glycerol detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.