Abstract

β-N-Acetylhexosaminidases are widely distributed exoglycosidases and have attracted significant attention due to their important roles in the field of pesticide and drug discovery. Remarkably, human O-GlcNAcase (hOGA) and human β-N-acetylhexosaminidase (HsHex) possess the same catalytic mechanism but play different physiological actions in vivo. In this Letter, we aim to improve the inhibitory potency and selectivity of previously reported thioglycosyl-naphthalimides against hOGA. The rational compound design led to the synthesis of 13r bearing a 4-piperidylnaphthalimide moiety as a highly potent hOGA inhibitor (K i = 0.6 μM against hOGA) with good selectivity (K i > 100 μM against HsHexB). Furthermore, to investigate the basis for the potency and selectivity of 13r against hOGA, the possible inhibitory mechanisms of selected inhibitors (15b, 13b, and 13r) against hOGA and HsHexB were studied using molecular docking and MD simulations. These 4-substituted naphthalimide thioglycosides may potentially serve as useful tools for the further study of the function of hOGA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.