Abstract

The surface phonon dispersion of a monolayer of graphite (MG) on Ni(111) has been measured in the Γ̄K̄ direction of the Brillouin zone by means of high-resolution electron energy-loss spectroscopy (HREELS). The phonon dispersion relations of the MG/Ni(111) system and those obtained after intercalation of Yb are characterized by graphite-like phonon modes, softened due to the strong interaction with the Ni substrate. In the case of Cu and Ag intercalation, in contrast, the corresponding surface dispersion curves are very similar to those of bulk graphite. Calculations of the surface phonon dispersion based on a force constant model revealed that the force constants related to vertical motion in the MG are very much more affected after intercalation than those related to horizontal vibrations. This demonstrates that the stiffening observed after Cu and Ag intercalation is caused by a weaker interaction of the graphite layer with the Ni substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.