Abstract

A series of ethylene propylene diene monomer (EPDM) nanocomposites have been prepared. First of all, EPDM is modified by grafting maleic anhydride to EPDM backbone. Subsequently, ethanolamine, 3-aminopropyltriethoxysilane and glycerine are added to react with the pendent anhydride to form grafted polyimides or polyols, respectively. The primary inorganic precursor, tetraethylsiloxane, is incorporated into these variously modified EPDM under acid condition to form the EPDM composites. The thermal properties of thermogravimetric analysis shows that the 20 % weight loss temperatures and char yields of various EPDM composites are higher than that of pristine EPDM. From the dynamic mechanic analysis studies, it exhibits both E′ and E″ of the composites are much higher than that of EPDM matrix. As confirmed by scanning electron microscopy, phase distributions of nano-inorganic component/SiO2 evenly disperse in these EPDM composites are correlated to exhibit higher rigidity and toughness than that of neat EPDM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call