Abstract

The Roothaan equations have been modified to compute molecular interactions between weakly bonded systems at the SCF level of theory without the basis set superposition error (BSSE). The increase in complication with respect to the usual SCF algorithm is negligible. Calculation of the SCF energy on large systems, such as nucleic acid pairs, does not pose any computational problem. At the same time, it is shown that a modest change in basis-set quality from 3-21G to 6-31G changes the binding energy by about 50% when computed according to standard SCF “supermolecule” techniques, while remaining practically constant when computed without introducing BSSE. Bader analysis shows that the amount of charge transferred between the interacting units is of the same order of magnitude when performed on standard SCF wave functions and those computed using the new method. The large difference between the corresponding computed energies is thus ascribed to the BSSE. © 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call