Abstract

In this project, an in situ soil treatment technique using the principles of electrokinetics was tested using laboratory experimental models in order to identify the potential of this approach in modifying and reinstating the physical properties of salt affected soils. Experiments were conducted in the laboratory using saline-sodic soils collected from two salt affected regions in central Victoria, Australia. Soil specimens were compacted in glass tanks to reproduce in situ density and in situ water content. Using mild steel electrodes inserted into the soil, a direct current was passed through the soil under a constant potential gradient of 0.5 V/cm for a period of 14 days. In separate experiments, distilled water and a saturated lime solution were introduced to the soil via the anode over this experimental period. It was observed that the soil dispersion, otherwise known as soil sodicity (measured as ESP—Exchangeable Sodium Percentage and SAR—Sodium Absorption Ratio) decreased by up to 90% in most regions of the soil between the electrodes. The compressive strength of the soil increased in excess of 100% with electrokinetic treatment alone while the lime-enhanced electrokinetic treatment led to an almost 200% strength increase. The liquid limit and plastic limit of the soil increased causing the plasticity index to decrease, indicating increases in soil compressive strength and workability. These results indicate the potential of this technique for improving the physical properties of salt affected soils both effectively and efficiently, and in particular gives hope for the remediation of salt affected land for infrastructure management and development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call