Abstract

In this paper, we present experimental evidence on the change of the phonon spectrum and vibrational properties of a bulk material through phonon hybridization mechanisms. The phonon spectrum in a finite material is strongly affected by the presence of free surfaces, which is the addition of a contribution from an essentially two-dimensional crystal. The phonon spectrum of a bulk material can hence be altered by a hybridization mechanism between confined phonon modes in nanostructures introduced on the surface of a bulk material and the underlying bulk phonon modes. We measured the heat capacities of bare and surface-structured silicon substrates originating from the same silicon wafer. Then, we deduced important features of the phonon spectra of the samples investigated through a rigorous analysis of the measured heat capacity curves. The results show that the shape and size of the nanostructures made on the surface of the bulk substrate have a strong effect on the phonon spectrum of the bulk material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.