Abstract

Modification to the flow field about a finite-span cylinder of low-aspect ratio (AR = 3) by a single synthetic jet, mounted normal to the cylinder axis, was studied experimentally using surface-mounted pressure taps, stereoscopic particle image velocimetry (SPIV), and constant-temperature anemometry. The synthetic jet altered the circulation about the cylinder and created a large spanwise change to the surface pressure, much greater than the dimensions of its orifice. SPIV measurements in the near wake showed that the synthetic jet enhances mixing of the downwash from the cylinder free end with the wake deficit, vectoring and narrowing the wake. The synthetic jet penetrates through the streamwise vorticity, enhancing mixing within the wake and reducing the power associated with the shedding frequency, St = 0.155, except below the vortex dislocation, where the shedding frequency was increased to that corresponding to a quasi-two-dimensional cylinder, St = 0.22.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.