Abstract

Edible films were cast from konjac glucomannan (KGM) solutions, with or without added alkali (KOH) and/or sodium carboxymethylcellulose (CMC). Four types of KGM-based films (KGM, KGM–KOH, KGM–CMC and KGM–CMC–KOH) were produced and characterized by scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), moisture sorption, water vapour permeability (WVP), and tensile tests. Tensile properties were studied as a function of water activity ( a w) over the range from 0.22 to 0.84. SEM revealed that films, with and without KOH, exhibited cross-sectional lamellar structures running perpendicular and parallel, respectively, to the film surface. Alkali treatment produced films with enhanced crystallinity, lower water-sorptive capacity (WSC) and WVP, and higher tensile properties. These effects were attributed to alkaline deacetylation of KGM molecules which permitted greater intermolecular interactions. The presence of CMC appeared to suppress crystallinity of native KGM films, but enhanced that of deacetylated KGM films. Films incorporating CMC exhibited higher WSC and WVP, but variable tensile properties depending on alkali treatment and a w. The tensile properties of all KGM-based films were profoundly affected by a w. Tensile modulus (TM) of all films were antiplasticized as a w was increased from 0.22 to 0.43, but tensile strength (TS) was generally plasticized by water. Tensile elongation of KGM, KGM–KOH, and KGM–CMC–KOH films was generally much less sensitive to water. However, KGM–CMC films exhibited minimum elongation, attributed to antiplasticization by water, over the intermediate a w range from 0.43 to 0.69. KGM–CMC–KOH films exhibited the highest TM and TS at any particular a w.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call