Abstract

In the last few years research activities have been focused on the modification of fiber properties with nano-scaled additives. One of the most important fields of research is the alteration of mechanical properties such as the tenacity and the specific breaking load. In this study, we determined the influence of nano-phyllosilicates on the drawability of polyamide 6 multifilament yarns. It was first demonstrated that the drawability of the fibers drastically increased in an industrially relevant high-speed melt spinning process. Structural properties of the material are identified by wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). Changes in the crystalline properties as well as in the alignment of the silicates are compared with the stress–strain curves of the fibers, and a molecular mechanism for the drawing process is derived from these experiments. In a first step, a significant phase transition in the crystalline structure unaffected by the silicates occurs for low draw ratios (DRs). Beyond this point, where unmodified fibers start to break, a gliding between the silicate layers takes place, which is responsible for an extended drawability of the fibers. This mechanism leads to new possibilities for fiber processing, which can be used to research ultra-fine filaments in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.