Abstract

AbstractThe optimal pitch angle which maximizes the penetration distance, along the magnetic field, of relativistic charged particles injected from the midplane of an axisymmetric field is investigated analytically and numerically. Higher‐order terms of the magnetic moment invariant are necessary to correctly determine the mirror point of trapped energetic particles, and therefore the loss cone. The modified loss cone resulting from the inclusion of higher‐order terms is no longer entirely defined by the pitch angle but also by the phase angle of the particle at the point of injection. The optimal orientation of the injection has a nonzero component perpendicular to the magnetic field line, and is in the plane tangential to the flux surface. Numerical integration of particle orbits were carried out for a relativistic electron in a dipole field, showing agreement with analytic expressions. The results are relevant to experiments, which are concerned with injection of relativistic beams into the atmosphere from aboard a spacecraft in the magnetosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.