Abstract

Cu/W composites are widely used in various industrial fields as they show thermomechanical properties suitable for a wide range of applications. Additionally, in semiconductor products, WTi in contact with Cu acts as a barrier material between Cu and Si/SiO2. Therefore, the bonding behavior of both Cu/W and Cu/WTi is of great economical interest, also with respect to the effects that impurities could have on the behaviour of the Cu/W(Ti) interface. The segregation behavior of relevant impurities has not been studied in detail before. In this work, we create atomistic models of the Cu/W and Cu/WTi interfaces, compare their energetics to previously known interfaces and study the effect of segregation on the interface cohesion. We find that all investigated segregants, i.e. Ti, Cl, S, Al, H, O, and vacancies weaken the cohesion of the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.