Abstract

Terahertz (THz) radiation with sub-millimeter wavelength falls in the gap between optical and radio frequencies. Conventional THz emitters do not intertwine with spin degrees of freedom. However, it was recently shown that broadband THz radiation can be efficiently created also by exploiting spin-based effects on ultrafast time scales. Here, we demonstrate the generation and control of THz radiation from microstructured spintronic THz emitters based on the inverse spin-Hall effect. Using time-domain THz spectroscopy, we compare the THz spectra of different stripe patterns made of Fe/Pt bilayers with a spectrum obtained from an extended Fe/Pt bilayer film. It is found that the THz spectrum can be altered by a proper choice of the microstructure dimensions. The experimentally observed spectra are interpreted in terms of a simplified multi-slit interference model, which captures the main experimental features. Our results pave the way for an efficient control of THz light emitted from magnetic heterostructures. This is a crucial step forward for the design and realization of directional THz sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call