Abstract

To modulate the soluble sugar content of strawberry fruits, we generated transgenic plants that incorporated an antisense cDNA of ADP-glucose pyrophosphorylase (AGPase) small subunit (FagpS) under the control of the strawberry fruit-dominant ascorbate peroxidase (APX) promoter (cv. Anther). Several independent transgenic lines were obtained and grown in the greenhouse for analysis of agronomic traits. Most transgenic fruit did not show significant differences in weight and hardness compared to control fruit. However, the starch content in fruit was decreased to 27–47% and the total soluble sugar content was increased to 16–37% in transgenic plants (analyzed by the HPLC of sugar composition at four different stages of fruit development). The sugar contents of fruits in transgenic lines were particularly higher than control fruits at the red stage. The results were consistent with northern analysis, which showed that the levels of AGPase mRNA drastically were reduced in the red stage of fruits in all the transgenic plants. In other tissues of transgenic plants, the FagpS mRNA expression level was similar to control plants. Our studies indicate that fruit-specific down-regulation of the AGPase gene might be an effective strategy for increasing sugar and decreasing starch content in strawberry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call