Abstract

Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of γ-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. The main outcome was that the GQDs irradiated at lower doses act as better photoproducers than the ones irradiated at higher doses. These results corroborate that the structural changes caused by gamma irradiation have a direct impact on GQD ability to produce singlet oxygen and their photostability under prolonged UV illumination. This makes low-dose irradiated GQDs promising candidates for photodynamic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call