Abstract

Freshwater macrophytes may increase sediment redox potential and the affinity of sediments for phosphorus through radial oxygen loss from their below-ground biomass. This study demonstrated that the ability to alter sediment redox potential differs between macrophytes, according to their capacity to transport oxygen. Of the emergent macrophytes, Typha domingensis increased sediment redox potential (218 mV above bare sediment) to a greater extent than Bolboschoenus caldwellii (41 mV above bare sediment). However, the inhibition of convective flow in T. domingensis reduced its oxidizing ability by 78 mV. In contrast, Potamogeton crispus, a submerged macrophyte, had no influence on sediment redox potential. The presence of T. domingensis also increased phosphorus uptake from the water column by 0.88 mg P m−2 day−1, above that of bare sediments. In addition, inundation predictably decreased sediment redox potential from 175 mV to −176 mV over a 42-day period. Similarly, the addition of cellulose (10 mg L−1) decreased sediment redox potential by 42 mV. Consequently, deposition of organic debris may counteract the oxidizing effects of macrophytes that have a limited capacity to transport oxygen, such as P. crispus. Results suggest that macrophytes play an important role in facilitating the restoration of freshwater systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.