Abstract

Attempts to modify the guanine specificity of ribonuclease T1 (RNase T1) by rationally designed amino acid substitutions failed so far. Therefore, we applied a semirational approach by randomizing the guanine binding site. A combinatorial library of approximately 1.6 million RNase T1 variants containing permutations of 6 amino acid positions within the recognition loop was screened on RNase indicator plates. The specificity profiles of 180 individual clones showing RNase activity revealed that variant K41S/N43W/N44H/Y45A/E46D (RNaseT1-8/3) exhibits an altered preference toward purine nucleotides. The ApC/GpC preference in the cleavage reaction of this variant was increased 4000-fold compared to wild-type. Synthesis experiments of dinucleoside monophosphates from cytidine and the corresponding 2'3'-cyclic diesters using the reverse reaction of the transesterification step showed a 7-fold higher ApC synthesis rate of RNase 8/3 than wild-type, whereas the GpC synthesis rates for both enzymes were comparable. This study shows that site-directed random mutagenesis is a powerful additional tool in protein design in order to achieve new enzymatic specificities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call