Abstract

In a novel approach, neural stem cells were transplanted to ameliorate radiation-induced myelopathy in the spinal cords of rats. A 12-mm section of the cervical spinal cord (T2-C2) of 5-week-old female Sprague-Dawley rats was locally irradiated with a single dose of 22 Gy of (60)Co gamma rays. This dose is known to produce myelopathy in all animals within 6 months of irradiation. After irradiation, the animals were subdivided into three groups, and at 90 days after irradiation, neural stem cells or saline (for controls) were injected into the spinal cord, intramedullary, at two sites positioned 6 mm apart on either side of the center of the irradiated length of spinal cord. The injection volume was 2 microl. Group I received a suspension of MHP36 cells, Group II MHP15 cells, and Group III (controls) two injections of 2 microl saline. All rats received 10 mg/kg cyclosporin (10 mg/ml) daily i.p. to produce immunosuppression. All animals that received saline (Group III) developed paralysis within 167 days of irradiation. The paralysis-free survival rates of rats that received transplanted MHP36 and MHP15 cells (Groups I and II) were 36.4% and 32% at 183 days, respectively. It was concluded that transplantation of neural stem cells 90 days after irradiation significantly (P = 0.03) ameliorated the expression of radiation-induced myelopathy in the spinal cords of rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.