Abstract

A series of hyperbranched polyesters (HBPEs) using trimethylolpropane (TMP) as a core were synthesized via an esterification reaction, and the molecular weights of these HBPEs were 1600, 2260, 3370, and 5170 g/mol, respectively. Then, these HBPEs were added into dope solutions to prepare PSf hollow fiber membranes via a wet-spinning method. When the HBPE molecule weight increased from 1600 to 5170 g/mol, the initial viscosities of the PSf–HBPE–PEG400–DMAc dope solutions increased, and the shear-thinning phenomenon of these dope solutions became increasingly obvious. When these dope solutions were immersed into the deionized water, the demixing rate increased with an increase in the HBPE molecule weight at first and then decreased; this results in the increase of membrane porosity and the coexistence of finger-like and sponge-like structures. With the addition of HBPE, the start pure water contact angle and the mean effective pore size of the membranes decreased, and the Jw increased. For the mechanical properties of the membranes, the breaking strength and the elongation of the membranes also increased. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.