Abstract

AbstractThe B‐ala/AIBN PBZ system has a high extent of ring‐opening of oxazine because phenol‐containing oligomers are formed at the early stage of the curing process. As a result, the B‐ala/AIBN PBZ system possesses a relatively stronger intramolecular hydrogen bonding and lower surface energy than the pure B‐ala system at low temperature curing. In this context, poly(4‐vinyl pyridine), poly(4‐vinyl phenol) thin films and polycarbonate substrates, which lack liquid resistance, possess low surface free energy after modification with B‐ala/AIBN = 5/1 PBZ.magnified image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.