Abstract

The immunologic response toward chronic inflammation or bone regeneration via the accumulation of M1 or M2 macrophages after injury could determine the fate of biomaterial. Human umbilical cord mesenchymal stem cells (hUCMSCs) have a pivotal immunomodulatory property on directing macrophage behaviors. Herein, for the first time, 3D-printed poly(lactide-co-glycolide) (PLGA) scaffolds modified with hUCMSC-derived extracellular matrix (PLGA-ECM) are prepared by a facile tissue engineering technique with physical decellularization and 2.44±0.29mg cm-3 proteins immobilized on the PLGA-ECM contain multiple soluble cytokines with a sustainable release profile. The PLGA-ECM not only attenuates the foreign body response, but also improves bone regeneration by increasing the accumulation of M2 macrophages in an improved heterotopic transplantation model of SCID mice. Furthermore, the PLGA-ECM scaffolds with the knockdown of transforming growth factor-β-induced protein (TGFβI/βig-H3) demonstrate that M2 macrophage accumulation improved by the PLGA-ECM could be attributed to increasing the migration of M2 macrophages and the repolarization of M1 macrophages to M2 phenotype, which are mediated by multiple integrin signaling pathways involving in integrin β7, integrin α9, and integrin β1 in a TGFβI-dependent manner. This study presents an effective surface modification strategy of polymeric scaffolds to initiate tissue regeneration and combat inflammatory response by increasing M2 macrophage accumulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.