Abstract

BackgroundCotton fiber is a single cell that arises from the epidermis of ovule. It is not only a main economic product of cotton, but an ideal material for studying on the growth and development of plant cell. Our previous study indicated that phytosterol content and the ratio of campesterol to sitosterol fluctuated regularly in cotton fiber development. However, what effects of modified phytosterol content and composition on the growth and development of cotton fiber cell is unknown. In this study, we overexpressed the GhSMT2–1, a cotton homologue of sterol C-24 methyltransferase 2 gene in transgenic upland cotton plants to modify phytosterol content and composition in fiber cells and investigated the changes on fiber elongation and secondary cell wall deposition.ResultsGhSMT2–1 overexpression led to changes of phytosterol content and the ratio of campesterol to sitosterol in fiber cell. At the rapid elongation stage of fiber cell, total phytosterol and sitosterol contents were increased while campesterol content was decreased in transgenic fibers when compared to control fibers. Accordingly, the ratio of campesterol to sitosterol declined strikingly. Simultaneously, the transgenic fibers were shorter and thicker than control fibers. Exogenous application of sitosterol or campesterol separately inhibited control fiber cell elongation in cotton ovule culture system in vitro. In addition, campesterol treatment partially rescued transgenic fiber elongation.ConclusionThese results elucidated that modification of phytosterol content and composition influenced fiber cell elongation and secondary cell wall formation. High sitosterol or low ratio of campesterol to sitosterol suppresses fiber elongation and/or promote secondary cell wall deposition. The roles of sitosterol and campesterol were discussed in fiber cell development. There might be a specific ratio of campesterol to sitosterol in different developmental stage of cotton fibers, in which GhSMT2–1 play an important role. Our study, at a certain degree, provides novel insights into the regulatory mechanisms of fiber cell development.

Highlights

  • Cotton fiber is a single cell that arises from the epidermis of ovule

  • Genes involved in phytosterol biosynthesis, such as GhSMT2–1, GhSMT1, GhCYP51G1, and GhHYDRA1, and those involved in BR synthesis or signaling are preferentially expressed in fiber cells, and their expression peaks at the stage of rapid fiber elongation [7, 8, 27,28,29,30,31,32,33,34]

  • Generation of transgenic cotton plants overexpressing GhSMT2–1 In order to modify phytosterol composition, especially, the ratio of campesterol to sitosterol in cotton fiber cells, we plan to overexpress GhSMT2–1 in cotton plant

Read more

Summary

Introduction

Cotton fiber is a single cell that arises from the epidermis of ovule. It is a main economic product of cotton, but an ideal material for studying on the growth and development of plant cell. Our previous study indicated that phytosterol content and the ratio of campesterol to sitosterol fluctuated regularly in cotton fiber development. What effects of modified phytosterol content and composition on the growth and development of cotton fiber cell is unknown. We overexpressed the GhSMT2–1, a cotton homologue of sterol C-24 methyltransferase 2 gene in transgenic upland cotton plants to modify phytosterol content and composition in fiber cells and investigated the changes on fiber elongation and secondary cell wall deposition. On gene expression and biochemical aspects, phytosterols are recognized as important factors for the growth and development of cotton fibers, it is unclear what effect of phytosterol content and composition changes on fiber growth

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call