Abstract

Responses to acetic acid toxicity in the budding yeast Saccharomyces cerevisiae have widespread implications in the biorefinery of lignocellulosic biomass and food preservation. Our previous studies revealed that Set5, the yeast lysine methyltransferase and histone H4 methyltransferase, was involved in acetic acid stress tolerance. However, it is still mysterious how Set5 functions and interacts with the known stress signaling network. Here, we revealed that elevated phosphorylation of Set5 during acetic acid stress is accompanied by enhanced expression of the mitogen-activated protein kinase (MAPK) Hog1. Further experiments uncovered that the phosphomimetic mutation of Set5 endowed yeast cells with improved growth and fermentation performance and altered transcription of specific stress-responsive genes. Intriguingly, Set5 was found to bind the coding region of HOG1 and regulate its transcription, along with increased expression and phosphorylation of Hog1. A protein-protein interaction between Set5 and Hog1 was also revealed. In addition, modification of Set5 phosphosites was shown to regulate reactive oxygen species (ROS) accumulation, which is known to affect yeast acetic acid stress tolerance. The findings in this study imply that Set5 may function together with the central kinase Hog1 to coordinate cell growth and metabolism in response to stress. IMPORTANCE Hog1 is the yeast homolog of p38 MAPK in mammals that is conserved across eukaryotes, and it plays crucial roles in stress tolerance, fungal pathogenesis, and disease treatments. Here, we provide evidence that modification of Set5 phosphorylation sites regulates the expression and phosphorylation of Hog1, which expands current knowledge on upstream regulation of the Hog1 stress signaling network. Set5 and its homologous proteins are present in humans and various eukaryotes. The newly identified effects of Set5 phosphorylation site modifications in this study benefit an in-depth understanding of eukaryotic stress signaling, as well as the treatment of human diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.