Abstract

Carboxylate groups on oxidized activated carbon surface were transformed to the forms of Mn2+ and Fe3+ (signed as OAC-Mn and OAC-Fe respectively) through multi-step procedure. This modified activated carbon then was used as an adsorption material for arsenic removing from aqueous solution. Synthetic water containing As(III) and As(V) was used for study of arsenic adsorption capacities of OAC-Fe and OAC-Mn. The similar study had also been done with original granular activated carbon for comparison. The effects of modified metals onto oxidized activated carbon, metals doses and initial arsenic concentration on the removal of As(III), As(V) have been surveyed and discussed. Batch adsorption experiments were carried out with arsenic concentration in the range of 1 – 50 mg/l. Langmuir models were used for the adsorption isotherm screening. The results showed that both of OAC-Fe and OAC-Mn have good adsorption capacities for As(III) but OAC-Fe has a greater removal capacity for As(V) than OAC-Mn. OAC-Mn was identified as a good material for the of As(III) removal, because of its oxidation efficiency of As(III) to As(V) during adsorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.